Progression in mathematical language: addition and subtraction

Y1	National Curriculum vocabulary expectations				National Curriculum content domain
	addition add total put together altogether	subtraction take away more than less than difference between distance between	equals digit zero backwards forwards	number bond	Number - addition and subtraction

	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
1.1	[comparing] The \qquad is heavier / lighter than the \qquad . The \qquad is longer / shorter than the \qquad There is more / less \qquad than \qquad . The \qquad is the same length / weight as the \qquad . There are more / fewer \qquad than \qquad . < represents is less than = represents is equal to > represents is more than [counting] One, two, three. There are three \qquad	

Progression in mathematical language: addition and subtraction

Y1	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - addition and subtraction
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

A whole can be split into two parts in lots of different ways.

A whole is always bigger than a part of the whole.

A part is always smaller than the whole.

Progression in mathematical language: addition and subtraction

| Y1 | National Curriculum
 vocabulary expectations | National Curriculum |
| :--- | :--- | :--- | :--- | :--- |
| | | content domain |

One, two, ... There are objects.
[more than two parts]
\qquad is the whole; \qquad is a part; \qquad is a part and __ is a part.

The represents all the counters.

The \qquad represents the red counters.

The \qquad represents the yellow counters.

The whole is \qquad and one part is \qquad so the other part must be \qquad .

1 more than \qquad
\qquad
1 less than \qquad s.
___ is 1 less than \qquad
_ is 1 more than \qquad _.

Progression in mathematical language: addition and subtraction

Y1	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - addition and subtraction
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

1.4	__ is five and __ more.
	is made of (a) pairs (s); it is an even number.
	is not made of pairs; it is an odd number.

Numbers that can be made out of groups of two are even numbers.

Numbers that can't be made out of groups of two are odd numbers.

Even numbers can be partioned into two odd parts or two even parts.

Odd numbers can be partioned into one odd part and one even part

If the whole is odd and one part is even, the other part must be odd.

If the whole is odd and one part is odd, the other part must be even.

If the whole is even and one part is odd, the other part must be odd.

If the whole is even and one part is even, the other part must be even.

Progression in mathematical language: addition and subtraction

Y1
National Curriculum vocabulary expectations

[concrete and pictorial contexts]
There are \qquad and \qquad . We can write this as \qquad plus \qquad Or $+$ \qquad
The __ represents the \qquad . The \qquad represents the \qquad -

NB Initially, the two parts should be shown in both possible arrangements and children required to write / say both expressions.
E.g.

There are 3 full glasses and 2 empty glasses. We can write this as 3 plus 2 . Or $3+2$. There are 2 empty glasses and 3 full glasses. We can write this as 2 plus 3 . Or $2+3$. Once this has been secured, the children need to recognise and enumerate the two groups, and write both expressions. This should be done when the parts are both clearly grouped and not clearly grouped.
___ is equal to \qquad
\qquad .
\qquad is equal to \qquad
__ and \qquad are the addends.
__ is the sum.

Progression in mathematical language: addition and subtraction

Y1	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - addition and subtraction
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

1.6	First... , then... , now.... . First... , then... , now.... , then... , now	
1.7	plus \qquad is equal to \qquad plus \qquad .	If we change the order of the addends, the sum remains the same. [commutative law of addition] Adding one gives one more. Subtracting one gives one less. Consecutive numbers have a difference of one. Adding two to an odd numbers gives the next odd number. Adding two to an even numbers gives the next even number. Subtracting two from an odd number gives the previous odd number. Subtracting two from an even number gives the previous even number. Consecutive odd numbers have a difference of two. Consecutive even numbers have a difference of two. When zero is added to a number, the number remains unchanged. When zero is subtracted from a number, the number remains unchanged. Subtracting a number from itself gives a difference of zero. Doubling a whole number always gives an even number. Halving is the inverse of doubling.

Progression in mathematical language: addition and subtraction

Y1	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - addition and subtraction
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

1.8	[counting] Zero, ten, twenty, thirty, ... No tens, one ten, two tens, three tens, This is the number \qquad . The \qquad represents \qquad tens. We have \qquad tens. We call this \qquad . I have \qquad groups of ten \qquad . We call this \qquad . This is \qquad . Ten more than \qquad is \qquad . \qquad is ten more than \qquad . This is \qquad . Ten less than \qquad is \qquad . \qquad is ten less than \qquad . I know that \qquad plus \qquad is equal to \qquad . So \qquad tens plus \qquad tens is equal to \qquad tens. I know that \qquad minus \qquad is equal to . \qquad So \qquad tens minus \qquad tens is equal to \qquad tens.

[^0]
Progression in mathematical language: addition and subtraction

| Y1 | National Curriculum | | National Curriculum |
| :--- | :--- | :--- | :--- | :--- |
| vocabulary expectations | content domain | | |
| | | Number - addition and subtraction | |
| | NCETM | | |
| additional language support (sentence stems) | NCETM | | |

To compare two-digit numbers, we need to compare the tens; if the tens digits are the same, we need to compare the ones digits.

Progression in mathematical language: addition and subtraction

Y1	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - addition and subtraction
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

1.10	There is one ten and \qquad ones. The 1 means one ten and the \qquad means \qquad one (s). [dual counting] Eleven, twelve, thirteen, ... One ten one, one ten two, one ten three, ... Alternatively Onety-one, onety-two, onety-three, ... \qquad is equal to ten plus \qquad - We know the number \qquad is odd / even because the ones digit is odd / even.	We know the number \qquad is odd / even because the ones digit is odd / even. A number is odd if the ones digit is odd. It can't be made from groups of two. A number is even if the ones digit is even. It can be made from groups of two.

Progression in mathematical language: addition and subtraction

Y2	National Curriculum vocabulary expectations	National Curriculum content domain
	sum difference partition inverse	Number - addition and subtraction
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
1.11	There are \qquad and \qquad . Altogether there are \qquad . First \qquad , then \qquad , then \qquad , now \qquad \qquad plus \qquad is equal to \qquad . First I partition the \qquad : \qquad plus \qquad is equal to \qquad . Then \qquad plus \qquad is equal to ten \qquad . _ and ten plus \qquad is equal to \qquad .	When we add three numbers, the total will be the same whichever pair we add first. If you change the order of the addends, the sum stays the same. We can look for pairs of addends which sum to 10.
1.12	The difference between the number of \qquad and the number of \qquad is \qquad . There are more \qquad than \qquad ; the difference between the number of \qquad and the number of \qquad is \qquad - There are fewer \qquad than \qquad ; the difference between the number of \qquad and the number of \qquad is \qquad . The \qquad represents the number of \qquad The \qquad represents the number of \qquad The \qquad represents the difference; it is how many more \qquad there are / are needed.	Consecutive numbers always have a difference of one. Consecutive odd numbers always have a difference of two. Consecutive even numbers always have a difference of two.

Progression in mathematical language: addition and subtraction

Y2
vocabulary expectations

1.13	\qquad is one more than \qquad is equal to \qquad plus one. \qquad plus one is equal to \qquad . \qquad is one less than \qquad . minus one is \qquad . The difference between \qquad and \qquad is equal to \qquad _. I know that \qquad plus \qquad is equal to \qquad ... (single-digit fact) ... so \qquad plus \qquad is equal to \qquad . (related two-digit plus single-digit calculation) I know that \qquad minus \qquad is equal to \qquad ... (single-digit fact) ... so \qquad minus \qquad is equal to \qquad . (related two-digit minus single-digit calculation) I know that \qquad plus \qquad is equal to ten, so I know that \qquad plus \qquad is equal to \qquad . I know that ten minus \qquad is equal to \qquad , so I know that \qquad minus \qquad is equal to \qquad .	
1.14	Ten more than \qquad is \qquad . is ten more than \qquad . Ten less than \qquad is \qquad . ___ is ten less than \qquad . We had \qquad tens and \qquad ones. Ten more gives us \qquad tens and \qquad ones. We had \qquad tens and \qquad ones. Ten less gives us \qquad tens and \qquad ones. One part is ten, the other part is \qquad and the whole is \qquad . This can be recorded as ten plus \qquad is equal to \qquad , or as \qquad plus ten is equal to . \qquad \qquad tens and \qquad ones, plus \qquad tens, is equal to \qquad tens and \qquad ones.	When we find ten more, the tens digit changes and the ones digit stays the same. When we find ten less, the tens digit changes and the ones digit stays the same.

Progression in mathematical language: addition and subtraction

Y2	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - addition and subtraction
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

1.15	First I partition the \qquad into \qquad and \qquad and the \qquad into \qquad and \qquad . (partition the two-digit addends) \qquad plus \qquad is equal to \qquad ... (addition of the tens) \qquad plus \qquad is equal to \qquad ... (addition of the ones) ... and \qquad plus \qquad is equal to \qquad . (addition of the totals of the tens and ones) So \qquad plus \qquad is equal to \qquad . (summary of the overall calculation, including units where appropriate)	
1.16	To subtract \qquad , we can subtract \qquad and then subtract \qquad (no bridge of a multiple of ten).	For a subtraction calculation where both numbers have the same ones digit, the difference is a multiple of ten.

Progression in mathematical language: addition and subtraction

Y3	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - addition and subtraction
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

1.17 One hundred is divided into __ equal parts, so each part / division has a value of __.

I know that __ plus ___ is equal to ten.
So, ___ tens plus ___ tens is equal to ten tens.
__ plus ___ is equal to 100.
I know that ten minus ___ is equal to \qquad -.

So, ten tens minus ___ tens is equal to ___ tens.
100 minus \qquad is equal to \qquad
I know that __ plus __ is equal to ten, so I know that ___ plus ___ is equal to one hundred. I know that ten minus ___ is equal to __ , so I know that one hundred minus ___ is equal to _.

There are___ groups of ten.
There is one group of one hundred and \qquad more tens. There are \qquad .

I know that \square is equal to \qquad (single-digit addends)

So _tens plus _ tens is equal to _ tens. (multiple-of-ten addend)
\qquad
\qquad is equal to one hundred and \qquad . (number names)

There is one group of one hundred and \qquad more. There are \qquad .

One hundred has no tens or ones in addition to the hundred.

There are ten tens in one hundred.
There are one hundred ones in one hundred.

First we make ten ones. We have one ten from the ones digits, so we need to make nine more.

Progression in mathematical language: addition and subtraction

Y3	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - addition and subtraction
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

1.18	\qquad \qquad ones. \qquad is \qquad hundreds and \qquad ones. \qquad \qquad tens and \qquad ones. \qquad \qquad hundreds, \qquad tens and \qquad ones. \qquad is between \qquad and \qquad . \qquad is the previous multiple of one hundred. \qquad is the next multiple of one hundred. \qquad hundred is the closest multiple of one hundred. This is \qquad hundred and \qquad . This is \qquad tens.	To compare three-digit numbers, we need to compare the hundreds digits; if the hundreds digits are the same, we need to compare the tens digits; if both the hundreds and the tens are the same, we need to compare the ones digits.
1.19	First we add: \qquad plus \qquad is equal to \qquad then we adjust: \qquad minus \qquad is equal to \qquad . (summary) \qquad plus \qquad is equal to \qquad plus \qquad minus \qquad . I have added \qquad to this added, so I need to subtract \qquad from the other addend.	If one addend is increased by an amount and the other addend is decreased by the same amount, the sum remains the same. For calculations that involve both addition and subtraction steps, we can add then subtract, or we can subtract then add; the final answer is the same.

Progression in mathematical language: addition and subtraction

Y3	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - addition and subtraction
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

1.20	We add the ones; \qquad ones plus \qquad ones. We add the tens; \qquad tens plus \qquad tens. (For Dienes) We line up the ones; \qquad one (s) plus \qquad one (s). We line up the tens; \qquad ten (s) plus \qquad ten (s). (For column addition) The \qquad in the ones column - it represents \qquad ones; the \qquad is in the ones column - it represents \qquad ones. The \qquad in the tens column - it represents \qquad tens; the \qquad is in the tens column - it represents \qquad tens. (For Dienes) \qquad one (s) plus \qquad one (s) is equal to \qquad one (s). \qquad ten (s) plus \qquad ten (s) is equal to \qquad ten (s). (For column addition) The ones column represents \qquad one (s) plus \qquad one (s) and is equal to \qquad ones. The tens column represents \qquad ten (s) plus \qquad ten (s) and is equal to \qquad tens.

In column addition, we start at the right-hand side.

If the column sum is equal to ten or more, we must regroup.

Progression in mathematical language: addition and subtraction

Y4	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - addition and subtraction
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

1.22	\qquad hundred plus \qquad hundred is equal to \qquad hundred. We know there are ten hundreds in one thousand, so \qquad hundred plus \qquad hundred is equal to \qquad thousand \qquad hundred. We know there are ten hundreds in one thousand, \qquad thousand \qquad hundred is equal to \qquad hundred. \qquad hundred minus \qquad hundred is equal to \qquad hundred. a is between \qquad and \qquad . The previous multiple of one thousand is \qquad . The next multiple of one thousand is \qquad . a is nearest to \qquad thousand. a is \qquad when rounded to the nearest thousand.	There are ten hundreds in one thousand. There are one hundred tens in one thousand. There are one thousand ones in one thousand. When rounding to the nearest ten, the ones digit is the digit to consider. If it is four or less we round down. If it is five or more we round up. When rounding to the nearest hundred, the tens digit is the digit to consider. If it is four or less we round down. If it is five or more we round up. When rounding to the nearest thousand, the hundreds digit is the digit to consider. If it is four or less we round down. If it is five or more we round up.

Progression in mathematical language: addition and subtraction

```
Y4 National Curriculum National Curriculum
vocabulary expectations
\begin{tabular}{|c|c|c|}
\hline & & Number - addition and subtraction \\
\hline & NCETM additional language support (sentence stems) & NCETM general statements / additional phrases \\
\hline 1.23 & \begin{tabular}{l}
The whole is divided into ten equal parts and \(\qquad\) of them is / are shaded; this is \(\qquad\) tenth (s) of the whole. \\
One tenth can be written as " 0.1 ", so \(\qquad\) tenths can be written as " 0. \(\qquad\) ". \\
This is \(\qquad\) and \(\qquad\) tenths. We can also say \(\qquad\) point .
\(\qquad\) \\
I say \(\qquad\) -point- \(\qquad\) tenth (s) but I think \(\qquad\) and \(\qquad\) tenth (s).
\(\qquad\) tenths plus / minus \(\qquad\) tenths is equal to \(\qquad\) tenths.
\(\qquad\) tenths plus \(\qquad\) tenths is equal to ten tenths, which is equal to one. \\
One is equal to ten tenths, ten tenths minus \(\qquad\) tenths is equal to \(\qquad\) tenths.
\(\qquad\) is between \(\qquad\) and \(\qquad\) .
\(\qquad\) is the previous whole number.
\(\qquad\) is the next whole number.
\(\qquad\) is the closest whole number.
\end{tabular} & \begin{tabular}{l}
The whole is divided into ten equal parts and one of them is shaded; this is one tenth of the whole. \\
If a digit is moved one column to the left, the number represented becomes ten times bigger / ten times the size. \\
If a digit is moved one column to the right, the number represented becomes ten times smaller; we can also say it becomes one tenth the size. \\
To compare two numbers, we compare digits with the same place value, starting with the largest place-value digit. \\
If there are five tenths or more round up to the next whole number; if there are fewer than five tenths round down to the previous whole number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Progression in mathematical language: addition and subtraction}
Y4
National Curriculum
vocabulary expectations \begin{tabular}{|l|l|l}
\hline & National Curriculum \\
content domain
\end{tabular}
1.24 The whole is divided into one hundred equal parts; __ parts is __ hundredths. ___ is ten times bigger than \(\qquad\) -.
___ is ten times smaller than / on tenth the size of \(\qquad\) -
___ is one hundred times bigger than \(\qquad\) .
_is one hundred times smaller than / one hundredth the size of \(\qquad\)
One hundredth can be written as "0.01", so \(\qquad\) hundredths can be written as " 0 . ". ".

I say \(\qquad\) -point- \(\qquad\) \(-\) but I think \(\qquad\) and \(\qquad\) hundredths.
__ hundredths plus / minus \(\qquad\) hundredths is equal to \(\qquad\) hundredths.
__ hundredths plus \(\qquad\) hundredths is equal to ten hundredths, which is equal to one tenth.

One tenth is equal to ten hundredths; ten hundredths minus \(\qquad\) hundredths is equal to \(\qquad\) _ hundredths.

Ten hundredths is equal to one tenth. Ten tenths is equal to one.
One tenth is equal to ten hundredths. One is equal to ten tenths.
___ is between \(\qquad\) and \(\qquad\)
__ is the previous tenth.
___ is the next tenth.

The whole is divided into one hundred equal parts; each part is one hundredth of the whole.

When one tenth is divided into ten equal parts, each part is one hundredth of the whole; ten hundredths is equal to one tenth.

One centimetre is one hundredth of a metre, so we can write one centimetre as zero-point-zero-one.
Ten centimetres is one tenth of a metre, so we can write ten centimetres as zero-point-one.

If there are five hundredths or more round up to the next tenth; if there are fewer than five hundredths round down to the previous tenth.

\section*{Progression in mathematical language: addition and subtraction}
\begin{tabular}{l} 
Y4 \\
\begin{tabular}{ll|l} 
National Curriculum \\
vocabulary expectations
\end{tabular} \\
\begin{tabular}{|l|l|l|l}
\hline & National Curriculum \\
content domain
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
1.25 & First we add: __ plus __ is equal to _ _ ... \\
& then we adjust:
\end{tabular}

Ten groups of ten pence is equal to one pound, so ten pence is one tenth of a pound.

One hundred groups of one penny is equal to one pound, so one penny is one hundredth of a pound.

Ten groups of one penny is equal to ten pence, so one penny is one tenth of ten pence.

The number to the left of the decimal point represents the number of whole pounds. The number to the right of the decimal point represents the number of additional pennies.

Ten pennies is equal to ten pence.
Ten groups of ten pence is equal to one pound.
One pound is equal to ten groups of ten pence.
Ten pence is equal to ten pennies.

\section*{Progression in mathematical language: addition and subtraction}
\begin{tabular}{|c|c|c|}
\hline Y5 & National Curriculum vocabulary expectations & National Curriculum content domain \\
\hline & & Number - addition and subtraction \\
\hline & NCETM additional language support (sentence stems) & NCETM general statements / additional phrases \\
\hline
\end{tabular}


Ten one thousands make ten thousand.
One hundred hundreds make ten thousand.
Ten ten thousands make one hundred thousand.
One hundred one thousands make one hundred thousand.

When rounding to the nearest hundred thousand, the ten thousands digit is the digit to consider. If it is four or less we round down. If it is five or more we round up.

When rounding to the nearest ten thousand, the thousands digit is the digit to consider. If it is four or less we round down. If it is five or more we round up.

\section*{Progression in mathematical language: addition and subtraction}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Y5} & National Curriculum vocabulary expectations & National Curriculum content domain \\
\hline & & Number - addition and subtraction \\
\hline & NCETM additional language support (sentence stems) & \begin{tabular}{l}
NCETM \\
general statements / additional phrases
\end{tabular} \\
\hline
\end{tabular}

Negative numbers are below zero. Negative numbers are less than zero.

Positive numbers are above zero. Positive numbers are greater than zero.

Temperatures / floors / places above sea level are positive.

Temperatures / floors / places below sea level are negative.
Zero degrees / ground floor / sea level is neither positive nor negative.
For both positive and negative numbers, the larger the value of the number, the further it is from zero.

When the \(y\)-coordinate is negative, the point is positioned below the \(x\)-axis.

When the \(y\)-coordinate is zero, the point is positioned on the \(x\)-axis.

When the x -coordinate is positive, the point is positioned to the left of the \(y\)-axis.

When the \(x\)-coordinate is zero, the point is positioned on the \(y\)-axis.

\section*{Progression in mathematical language: addition and subtraction}
\begin{tabular}{|c|c|c|}
\hline Y5 & National Curriculum vocabulary expectations & National Curriculum content domain \\
\hline & & Number - addition and subtraction \\
\hline & NCETM additional language support (sentence stems) & \begin{tabular}{l}
NCETM \\
general statements / additional phrases
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l}
\hline 1.28 & & \begin{tabular}{l} 
A whole split into equal parts can be seen as both addi- \\
tive and a multiplicative structure. \\
a whole split into unequal parts can be seen as an addi- \\
tive structure.
\end{tabular} \\
\hline
\end{tabular}

\section*{Progression in mathematical language: addition and subtraction}
\begin{tabular}{|c|c|c|}
\hline Y5 & National Curriculum vocabulary expectations & National Curriculum content domain \\
\hline & & Number - addition and subtraction \\
\hline & NCETM additional language support (sentence stems) & \begin{tabular}{l}
NCETM \\
general statements / additional phrases
\end{tabular} \\
\hline \[
\begin{aligned}
& 1.29 \\
& \text { ctd. }
\end{aligned}
\] & \begin{tabular}{l}
I've added \(\qquad\) to both the minuend and the subtrahend, so the difference stays the same. I've subtracted \(\qquad\) from both the minuend and the subtrahend, so the difference stays the same. \\
I've added \(\qquad\) to the minuend (subtrahend), so I need to add \(\qquad\) to the subtrahend (minuend) to keep the difference the same. \\
I've subtracted \(\qquad\) from the minuend (subtrahend), so I need to subtract \(\qquad\) from the subtrahend (minuend) to keep the difference the same. \\
I've added \(\qquad\) to the minuend and kept the subtrahend the same, so I must add \(\qquad\) to the difference. \\
I've subtracted \(\qquad\) from the minuend and kept the subtrahend the same, so I must subtract
\(\qquad\) from the difference. \\
l've kept the minuend the same and added \(\qquad\) to the subtrahend; so I must subtract \(\qquad\) from the difference. \\
I've kept the minuend the same and subtracted \(\qquad\) from the subtrahend; so I must add \(\qquad\) to the difference.
\end{tabular} & \begin{tabular}{l}
If the minuend and the subtrahend are changed by the amount, the difference stays the same. \\
The value of the expressions on each side of an equals symbol must be the same. \\
The more we subtract, the less we are left with. \\
The less we subtract, the more we are left with. \\
If the minuend is changed by an amount and the subtrahend is kept the same, the difference changes by the same amount.
\end{tabular} \\
\hline
\end{tabular}

\section*{Progression in mathematical language: addition and subtraction}
\begin{tabular}{|c|c|c|}
\hline Y6 & National Curriculum vocabulary expectations & National Curriculum content domain \\
\hline & & Number - addition and subtraction \\
\hline & NCETM additional language support (sentence stems) & \begin{tabular}{l}
NCETM \\
general statements / additional phrases
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1.30 & \begin{tabular}{l}
The \(\qquad\) represents \(\qquad\) - \\
The value of the \(\qquad\) is \(\qquad\) .
\(\qquad\) is between \(\qquad\) and \(\qquad\) . \\
The previous multiple of one million is \(\qquad\) . The next multiple of one million is \(\qquad\)
\(\qquad\) is nearer to \(\qquad\) .
\(\qquad\)
\(\qquad\) rounded to the nearest million.
\end{tabular} & \begin{tabular}{l}
When rounding to the nearest million, the hundred thousands digit is the digit to consider. If it is four or less we round down. If it is five or more we round up. \\
When rounding to a particular degree of accuracy, the digit to the right of the place value you are rounding to is the one that determines whether to round up or down.
\end{tabular} \\
\hline 1.31 & & \\
\hline
\end{tabular}```


[^0]:    Ten ones are equal to one ten.
    We have one group of ten.
    We have one ten.

    All multiples of ten end with a zero.

