Progression in mathematical language: multiplication and division

Yl	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
2.1	There are \qquad one penny coins; the total value is \qquad pence. This is a \qquad -pence coin. It has a value of \qquad p. There are \qquad _c coins. Each coin has a value of \qquad p. This is \qquad p. The \qquad costs \qquad p. Each coin has a value of \qquad p. So I need \qquad coins.	I say two pence, but I think two one-pennies. I say five pence, but I think five one-pennies. I say ten pence, but I think ten one-pennies. [dual counting] One group of two, two groups of two, three groups of two... Two, four, six

Progression in mathematical language: multiplication and division

| Y2 | National Curriculum
 vocabulary expectations | National Curriculum |
| :--- | :--- | :--- | :--- |
| | content domain | |
| | NCETM | |
| additional language support (sentence stems) | | |

2.2	[before grouping] There are some \qquad [after grouping] The \qquad have been grouped. The groups are equal because there are the same number of \qquad in each group. The groups are unequal because there are a different number of \qquad in each group. [equal groups] There are \qquad equal groups of \qquad There are \qquad in each group. There are \qquad groups of \qquad . [repeated addition] There are \qquad and \qquad and \qquad and We can write this as \qquad plus \qquad plus \qquad plus [multiplication expression] There are \qquad groups of \qquad . (which is linked to the multiplication expression) x \qquad \qquad We can write this as \qquad times . \qquad There are \qquad groups of _. \qquad There are \qquad 's.	
2.3	_ times _ is equal to _ .	Factor times factor is equal to the product. The product is equal to factor times factor. Number of groups x group size $=$ product. Group size x number of groups = product.

Progression in mathematical language: multiplication and division

Y2	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
2.4	\qquad is a factor \qquad is a factor. The product of \qquad and \qquad is \qquad . __ is the product of \qquad and \qquad . _ group of \qquad is equal to _. \qquad _ groups of \qquad are equal to \qquad _. \qquad times \qquad is equal to . \qquad \qquad time is equal to \qquad . \qquad times is equal to \qquad . \qquad times \qquad is equal to \square . The product of \qquad and zero is zero. The product of \qquad and one is \qquad . The product of one and \qquad is \qquad	For every one group of ten, there are two groups of five. Products in the ten times table are also in the five times table. When zero is a factor, the product is zero. When one is a factor, the product is equal to the other factor.
2.5	(one equation, two interpretations) \qquad times \qquad can represent \qquad groups of \qquad . It can also represent \qquad groups of \qquad (or \qquad _ , _ times). If there are \qquad equal groups, we can use the \qquad times table. There are two groups of \qquad . There are \qquad , two times. This is the same as double \qquad . \qquad , two times is the same as double \qquad . I know double \qquad is \qquad , so two groups of \qquad is \qquad _. There are \qquad altogether; half of \qquad is equal to \square . Half of \qquad is equal to \qquad . Double \square _ is equal to \qquad -. I know that double \qquad is \qquad ; so half of \qquad is . \qquad	If there are two equal groups, we can use the two times table. If there are five equal groups, we can use the five times table. If there are ten equal groups, we can use the ten times table. If we need to double / find twice the amount, we can use the facts from the two times table. Doubling a whole number always gives an even number. If there are two equal groups, we can use doubling facts. When one of the factors is two, the product is double the other factor and the other factor is half the product.

Progression in mathematical language: multiplication and division

Y2	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
2.6	is divided into groups of \qquad . There are \qquad groups. \qquad is divided into \qquad groups of \qquad . \qquad is divided into __ groups of \qquad with a remainder of \qquad . \qquad divided into groups of \qquad - The \qquad represents the total number of \qquad . The \qquad represents the number of \qquad in each group. \qquad is the dividend. is the divisor. \qquad is the quotient. We can represent this as \qquad divided between \qquad -. \qquad divided between \qquad is equal to \qquad each. \qquad tens are equal to \qquad , so \qquad divided into groups of ten is equal to _. \qquad	We can skip count using the divisor to find the quotient. If the divisor is ten, we can use the ten times table to find the quotient. If the divisor is five, we can use the five times table to find the quotient. If the divisor is two, we can use the two times table to find the quotient. If the divisor is two, the quotient is half of the dividend. A number is divisible by two if the ones digit is even. A number is divisible by ten if the ones digit is zero. A number is divisible by five if the ones digit is five or zero. When the dividend is zero, the quotient is zero. When the dividend is equal to the divisor, the quotient is one. When the divisor is equal to one, the quotient is equal to the dividend.

Progression in mathematical language: multiplication and division

Y3
National Curriculum

vocabulary expectations \quad| National Curriculum |
| :--- |
| |

2.7	[revising from Year 2] _ group of \qquad is equal to . \qquad _ groups of \qquad are equal to \qquad . \qquad times \qquad is equal to \qquad _. [before shortening to...] One is , two s are, three s are
	Four is double two, so \qquad fours is double \qquad twos. Two is half of four, so \qquad twos is half of \qquad fours.
	Eight is double four, so \qquad eights is double \qquad fours Four is half of eight, so _ fours is half of _ eights.

For every one group of four, there are two groups of two.
Products in the four times table are also in the two times table

The product of an even number and two is a product in the four times table.

Products in the eight times table are also in the four times table.

The product of an even number and four is a product in the eight times table.
Products in the eight times table are also in the two times table.

If a number is divisible by four, halving it gives an even number.

If a number is divisible by eight, halving it twice gives an even number.

For numbers with more than two digits: if the final two digits are divisible by four then the number is divisible by four.

Progression in mathematical language: multiplication and division

Y3	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

Nine is triple three, so __ nines is triple __ threes.
Products in the six times table are also in the three times table.

The product of an even number and three is a product in the six times table.

For every one group of nine, there are three groups of three.
For a number to be divisible by three, the sum of the digits of the number must be divisible by three.

For every one group of six, there are two groups of three. For a number to be divisible by six, the number must be divisible by both two and three.

For a number to be divisible by nine, the sum of the digits of the number must be divisible by nine.

Progression in mathematical language: multiplication and division

Y3	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

2.9

Odd factor x odd factor = odd product.
If both factors are odd, the product is odd.
Odd times odd is odd.

Even factor x odd factor $=$ even product.
Even times odd is even.
and
Odd factor x even factor $=$ even product.
Odd times even is even.
If one factor are odd and the other factor is even, the product is even.
If one of the factors is even, the product is even.

Even factor x even factor $=$ even product.
Even times even is even.

When both factors have the same value, the product is called a square number. Square numbers can be represented by square arrays.

Progression in mathematical language: multiplication and division

Y4	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
2.10	The product of \qquad and \qquad is equal to the product of \qquad and \qquad - [simplified to...] \qquad times \qquad is equal to \qquad times \qquad . \qquad is equal to \qquad plus \qquad , so \qquad times \qquad is equal to \qquad times \qquad plus \qquad times \qquad . \qquad is equal to \qquad minus \qquad , so \qquad times \qquad is equal to \qquad times \qquad minus \qquad times \qquad .	The product in the multiplication equation has the same value as the dividend in the matching division equation. The factors in the multiplication equation have the same values aa the divisor and the quotient in the matching division equation. factor x ? = product ? X factor = product dividend \div divisor $=$ quotient When zero is a factor, the product is zero. We should never write a calculation where the divisor is zero. When the dividend is zero, the quotient is zero.
2.11		For every some group of twelve, there are two groups of six. A two-digit number is divisible by eleven if the digits are the same. For a number to be divisible by twelve, the number must be divisible by both three and four.

Progression in mathematical language: multiplication and division

Y4	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
2.12	\qquad is divided into groups of \qquad . There are \qquad groups and a remainder of \qquad \qquad is divided into groups of \qquad , with a remainder of . \qquad \qquad is divided between \qquad is equal to \qquad each, with a remainder of \qquad . The largest multiple of \qquad that is less than or equal to \qquad is \qquad . \qquad is a multiple of \qquad , so when it is divided into groups of \qquad there are none left over; there is no remainder. \qquad is a not multiple of \qquad , so when it is divided into groups of \qquad there are some left over; there is a remainder.	The remainder is always less than the divisor. If the dividend is a multiple of the divisor, there is no remainder. If the dividend is not a multiple of the divisor, there is a remainder.
2.13	Think of \qquad and make it ten times the size. Think of \qquad and multiply by ten. \qquad multiplied by ten is equal to . \qquad \qquad is ten times the size of \qquad . \qquad divided by ten is equal to . \qquad \qquad multiplied by one hundred is equal to \qquad \qquad is one hundred times the size of . \qquad	To find ten times as many, multiply by ten. All multiples of ten have a ones digit of zero. When a number is multiplied by ten, the product is a multiple of ten. To multiply a whole number by ten, place a zero after the final digit of that number. To find the inverse of ten times as many, divide by ten. To divide a multiple of ten by ten, remove the zero from the ones place.

Progression in mathematical language: multiplication and division

| Y4 | National Curriculum | |
| :--- | :--- | :--- | :--- |
| vocabulary expectations | National Curriculum | |
| | | content domain |

[^0]ctd
To find one hundred times as many, multiply by one hundred.

All multiples of one hundred have both a tens and a ones digit of zero.

When a number is multiplied by one hundred, the product is a multiple of one hundred.
To multiply a whole number by one hundred, place two zeros after the final digit of that number.
To find the inverse of one hundred times as many, divide by one hundred.

To divide a multiple of one hundred by one hundred, remove the two zeros (from the tens and ones places).

Multiplying by one hundred is equivalent to multiplying by ten, and then multiplying by ten again.

Dividing by one hundred is equivalent to dividing by ten and then dividing by ten again.

If one factor is made ten times the size, the product will be ten times the size

If the dividend is made ten times the size, the quotient will be ten times the size.

If one factor is made one hundred times the size, the product will be one hundred times the size.
If the dividend is made one hundred times the size, the

Progression in mathematical language: multiplication and division

Y4	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
2.14		If there are ten or more ones, we must regroup the ones into tens and ones. If there are ten or more tens, we must regroup the tens into hundreds and tens. If there are ten or more hundreds, we must regroup the hundreds into thousands and hundreds.
2.15		If dividing the tens gives a remainder of one or more tens, we must exchange the remaining tens for ones. If dividing the hundreds gives a remainder of one or more hundreds, we must exchange the remaining hundreds for tens.

Progression in mathematical language: multiplication and division

Y4	National Curriculum vocabulary expectations	National Curriculum content domain		
	NCETM			
additional language support (sentence stems)	Number - multiplication and division			

2.16	The distance around the edge of the \qquad is its perimeter. The perimeter of the \qquad is \qquad cm . This shape has an area of \qquad square units. The \qquad represents the \qquad To find the area of a rectangle, multiply the length by the width.
2.17	The __ is _ times the length / mass / volume of the _ .

Perimeter is measured in units of length.
You can use addition to find the perimeter of a shape. The perimeter of a rectangle is equal to two times the length of the long side plus two times the length of the short side.

The perimeter of a square is equal to four times the length of one of the sides.

The perimeter of an equilateral triangle is equal to three times the length of one of the sides.

To find the perimeter of a regular polygon, you multiply the length of one of the sides by the number of sides.
If you know the perimeter of a regular polygon, you divide it by the number of sides to find the length of one of its sides.

We measure area in square centimetres. We write this as " cm^{2} ".

Area \div known side $=$ unknown side (for a rectangle).

If two objects are the same length / mass / volume, one object is one times the length / mass / volume of the other.

Progression in mathematical language: multiplication and division

Y5	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
2.18	If I multiply \qquad by łwo, I must divide \qquad by two for the product to stay the same. If I multiply one factor by \qquad , I must divide the other factor by \qquad for the product to stay the same. If I multiply the dividend by \qquad , I must multiply the divisor by \qquad for the quotient to stay the same. If I divide the dividend by \qquad , I must divide the divisor by \qquad for the quotient to stay the same.	If I double one factor, I must halve the other factor for the product to stay the same.
2.19	\qquad times \qquad ones is equal to \qquad ones, so \qquad times \qquad tenths is equal to \qquad tenths. \qquad times \qquad ones is equal to \qquad ones, so \qquad times \qquad hundredths is equal to \qquad hundredths. One-tenth of \qquad metre (s) is \qquad metre (s). \qquad is one-tenth the size of \qquad , so \qquad times \qquad is one-tenth the size of \qquad times \qquad . \qquad is one-hundredth the size of \qquad , so \qquad times \qquad is one-hundredth the size of \qquad times . \qquad I move the digits of the number being multiplied \qquad places to the left until I get a whole number; then I multiply; then I move the digits of the product \qquad places to the right. If one factor is made \qquad times the size, the product will be \qquad times the size.	When a number is divided by ten, the digits move one place to the right. When a number is divided by one hundred, the digits move two places to the right. When a number is multiplied by zero-point-one / one tenth, the digits move one place to the right. When a number is multiplied by zero-point-zero-one / one hundredth, the digits move two places to the right. If one factor is made one-tenth times the size, the product will be one-tenth times the size. If one factor is made one-hundredth times the size, the product will be one-hundredth times the size. In short multiplication, if there is a decimal point in the number being multiplied, put a decimal point in the product; line it up with the decimal point in the number being

Progression in mathematical language: multiplication and division

Y5	National Curriculum vocabulary expectations	National Curiculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
$\begin{aligned} & 2.19 \\ & \text { ctd. } \end{aligned}$	\qquad is one-tenth the size of \qquad , so \qquad divided by \qquad is one-tenth the size of \qquad divided by \qquad is one-hundredth the size of \qquad , so \qquad divided by \qquad is one-hundredth the size of \qquad divided by \qquad —. I move the digits of the dividend \qquad places to the left until I get a whole number; then I divide; then I move the digits of the quotient \qquad places to the right.	When a number is multiplied by a value greater than one, the product is greater than the original number. When a number is multiplied by a value less than one, the product is less than the original number. If the dividend is made one-tenth times the size, the quotient will be one-tenth times the size. If the dividend is made one-hundredth times the size, the quotient will be one-hundredth times the size. In short division, if there is a decimal point in the dividend, put a decimal point in the quotient; line it up with the decimal point in the dividend.
2.20	The amount of space the \qquad takes up is its volume. The \qquad has a larger / smaller volume than the \qquad because it occupies more / less space. This shape has a volume of \qquad cm^{3}. This layer has \qquad rows of cubes. There are \qquad cm^{3} cubes in this layer. This layer has a volume of \qquad cm^{3}. There are \qquad layers of \qquad cm^{3}. The volume if the cuboid is \qquad cm^{3}.	You can measure volume in cubic centimetres. You write this as cm^{3}. You can measure volume in cubic metres. You write this as m^{3}. The volume of a cuboid can be found by multiplying the length by the width by the height. If you change the order of the factors, the product remains the same. When you multiply three numbers, the product will be the same whichever pair we multiply first.

Progression in mathematical language: multiplication and division

Y5	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
2.21	There are \qquad tiles. There are \qquad rows and \qquad columns. So \qquad and \qquad are factors of \qquad __ is a factor of \qquad because \qquad is in the \qquad times table. \square is a factor of \qquad because \qquad x X_= \qquad \square is a multiple of \qquad because _ \square $x^{\ldots}=$ \qquad is a factor of \qquad because \square $\div-=$ = \qquad is a multiple of \qquad because \qquad $\div \ldots=$ \qquad	" 1 " is a factor of all positive integers. Every positive integer is a factor of itself. The smallest factor of a positive integer is always " 1 ". The largest factor of a positive integer is always itself. Numbers that have more than two factors are composite numbers. Numbers that have exactly two factors are called prime numbers.
2.22		When there are no brackets, multiplication is completed before addition and subtraction.

Progression in mathematical language: multiplication and division

Y6	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

2.23

To multiply multiples of ten, one hundred or one thousand, remove the zeros, find the product of the singledigit numbers and then replace the zeros.

To multiply by a multiple of ten, use short multiplication by a single-digit number and then multiply by ten.

To multiply by a multiple of one hundred, use short multiplication by a single-digit number and then multiply by one hundred.

To multiply by a multiple of one thousand, use short multiplication by a single-digit number and then multiply by one thousand.

To multiply two two-digit numbers, first multiply by the ones, then multiply by the tens, and then add them together.

To multiply a three-digit number by a two-digit number, first multiply by the ones, then multiply by the tens, and then add them together.
When multiplying, you can write a composite number as factor \mathbf{x} factor and use the associative law to make the calculation more efficient.

Progression in mathematical language: multiplication and division

Progression in mathematical language: multiplication and division

Y6
National Curriculum vocabulary expectations
National Curriculum content domain

$\begin{aligned} & 2.25 \\ & \text { ctd. } \end{aligned}$	If I multiply the divisor by \qquad and keep the dividend the same, I must divide the quotient by If I divide the divisor by \qquad and keep the dividend the same, I must multiply the quotient by
2.26	The \qquad represents the \qquad The dividend is \qquad The divisor is \qquad because \qquad . The mean is \qquad $\div=$. \qquad

If I double the divisor and keep the dividend the same, I must halve the quotient.

If I multiply the divisor by two and keep the dividend the same, I must divide the quotient by two.

If I halve the divisor and keep the dividend the same, I must double the quotient.

If I divide the divisor by two and keep the dividend the same, I must multiply the quotient by two.

The mean is the size of each part when a quantity is shared equally.
The mean is the total of the numbers divided by how many numbers there are.

If the number of values in the set stays the same and the total increases, the mean also increases.

If the number of values in the set stays the same and the total decreases, the mean also decreases.

Progression in mathematical language: multiplication and division

Y6	National Curriculum vocabulary expectations	National Curriculum content domain
		Number - multiplication and division
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
2.27	For every \qquad , there are \qquad The length of one of the sides of the square is \qquad times the length of one of square . \qquad The side-length of a square \qquad is \qquad times the side-length of square \qquad . To change shape \qquad into shape \qquad , scale the side-lengths by a scale factor of \qquad - The ratio of the dimensions of shape \qquad to the dimensions of shape \qquad is equal to \qquad -to \qquad - To change shape \qquad into shape \qquad , scale the dimensions by a scale factor of . \qquad	If the scale factor is greater than one, the shape is made larger. We can say the shape is enlarged. If the scale factor is one, the shape is the same size. If the scale factor is less than one, the shape is made smaller. We can say the shape is reduced.
2.28		When there are no brackets, division is completed before addition and subtraction. When two dividends are divided by the same divisor, we can add the dividends first and then divide. When two dividends are divided by the same divisor, we can subtract the dividends first and then divide.

Progression in mathematical language: multiplication and division

| Y6 | National Curriculum
 vocabulary expectations | National Curriculum
 content domain |
| :--- | :--- | :--- | :--- |
| | NCETM
 additional language support (sentence stems) | Number - multiplication and division |

2.29		When a number is multiplied by one thousand, the digits move three places to the left. When a number is divided by one thousand, the digits move three places to the right. Dividing by one thousand is equivalent to multiplying by one thousandth. When a number is multiplied by 0.001 /one thousandth, the digits move three places to the right.
2.30	A \qquad is a parallelogram because \qquad The base is _. \qquad The perpendicular height is \qquad . The area is \qquad - The area is \qquad square units.	A parallelogram is a quadrilateral with opposite sides that are parallel and equal in length. A parallelogram can be made into a rectangle that has the same area. To find the area of a parallelogram multiply the base by the perpendicular height. A triangle is a 2D shape with three sides and three angles. It can be classified by the length of its sides and the sizes of its angles. We can count squares to find the area of a triangle. Two right-angled triangles that are the same can be joined to make a rectangle.

Progression in mathematical language: multiplication and division

Y6	National Curriculum vocabulary expectations	National Curriculum content domain
	NCTM	
	NCETM	
additional language support (sentence stems)	Number - multiplication and division	

$\begin{aligned} & 2.30 \\ & \text { ctd } \end{aligned}$	The distance around the edge of the ___ is its perimeter.	Two triangles that are the same can be joined to make a parallelogram. A parallelogram can be divided into two triangles. To find the area of a triangle multiply the base by the perpendicular height and then divide by two. Shapes can have the same perimeter but different areas. Shapes can have the same areas but different perimeters. When a shape has been transformed by a scale factor, the perimeter is also transformed by the same scale factor.

[^0]: 2.13

