Progression in mathematical language: fractions

Y2	National Curriculum vocabulary expectations	National Curriculum content domain
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
3.0	The \qquad is split into \qquad equal parts. Each part is one \qquad . The whole is divided into \qquad equal parts and we have \qquad of them.	

Progression in mathematical language: fractions

Y3	National Curriculum		
vocabulary expectations		\quad	National Curriculum
:---			
content domain			

3.1 \begin{tabular}{l}
If___ is the whole, then___ is part of the whole.

The whole has been divided into___equal / unequal parts.

The parts are equal. I know this because the number of ____ in each part is the same.

The parts are unequal. I know this because the number of___ in each part is not the
same.

\end{tabular}

A part is always smaller than the whole.

Equal-sized parts do not have to look the same.

Different parts of the same-sized whole can be directly compared based on their size.

As the whole increases in size and the size of the selected part remains the same, each part becomes smaller in relation to the whole.

Progression in mathematical language: fractions

Y3	National Curriculum vocabulary expectations	National Curriculum content domain
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

The whole has been divided into \qquad equal parts.
__ parts of the whole has been shaded.

The denominator is \qquad because the whole is divided into \qquad equal parts.

The whole has been divided into \qquad equal parts.

Each equal part is one- \qquad of the whole.

OR
One of these parts is highlighted. This part is one- \qquad of the whole.

OR
One part is one- \qquad of the whole.

If one- \qquad is a part, then the whole is \qquad times as much. Take \qquad parts and put them together to make one whole.

Progression in mathematical language: fractions

Y3	National Curriculum vocabulary expectations	National Curriculum content domain
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases

3.3	I have \qquad one- \qquad ; I have \qquad I have \qquad one-tenths; I have \qquad -tenths. There are \qquad equal parts in the whole. There are \qquad parts shaded. \qquad is shaded. The whole has been divided into \qquad equal parts. \qquad of the parts are shaded; that is \qquad of the whole. We have split our whole into \qquad equal parts, so or unit fraction is \qquad . \qquad is \qquad lot of \qquad 1 \qquad is \qquad lots of \qquad 1 I know that \qquad is less than \qquad ... $\text { ...so -_ is less than } \frac{1}{}$ The whole is divided into \qquad equal parts and we have \qquad of them.

When the numerator and denominator are the same the fraction is equivalent to one whole.

When the numerator and denominator are the same the fraction has a value of one.

When we compare fractions with the same denominator, the greater the numerator, the greater the fraction.

When comparing fractions, the whole has to be the same.

When comparing unit fractions, the greater the denominator , the smaller the fraction.

Progression in mathematical language: fractions

Y3	National Curriculum vocabulary expectations	National Curriculum content domain
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
$\begin{aligned} & 3.3 \\ & \mathrm{ctd} \end{aligned}$	\qquad \qquad lot of \qquad is \qquad lots of \qquad I know that \qquad is greater than \qquadso I know that \qquad lots of \qquad is greater than \qquad lots of	

Progression in mathematical language: fractions

Y3	National Curriculum vocabulary expectations	National Curriculum content domain
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
3.4	\qquad lot of \qquad is \qquad lots of \qquad I know that \qquad $+\ldots=$ \qquad ...so, I know that \qquad $+\square=$ \qquad \qquad is \qquad lot of \qquad \qquad \qquad lots of \qquad I know that \qquad $-$ \qquad $=$ \qquad ...so, I know that \qquad - $=$ \qquad	When adding fractions with the same denominators, just add the numerators. When subtracting fractions with the same denominators just subtract the numerators.

Progression in mathematical language: fractions

Y4	National Curriculum vocabulary expectations	National Curriculum content domain
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
3.5	There are \qquad parts between zero and one. This means we are counting in units of \qquad [Alongside a number line] The line is divided into \qquad equal parts. This allows us to count in \qquad _. Each interval on the line is divided into \qquad equal parts. This allows us to count in \qquad . The parts are \qquad and \qquad . The total, or whole, is \qquad . Each whole is divided into \qquad equal parts. We have \qquad of these equal parts. This represents \qquad (s). There are \qquad groups of \qquad - \qquad which is \qquad , and \qquad more quarters, so that is \qquad - quarters. The denominator is \qquad . This means that each whole has been split into \qquad equal parts. \qquad parts make each whole. The numerator is \qquad . This means there are \qquad equal parts. It is possible to make \qquad full groups of \qquad \qquad and there are \qquad more \qquad .	Quantities made up of both whole numbers and a fractional part can be expressed as mixed numbers.

Progression in mathematical language: fractions

| Y4 | National Curriculum | |
| :--- | :--- | :--- | :--- |
| vocabulary expectations | | National Curriculum |
| content domain | | |

Progression in mathematical language: fractions

Y5	National Curriculum		
vocabulary expectations		\quad	National Curriculum
:---			
content domain			

Sometimes two fractions have the same value. We call these equivalent fractions.

When the numerator and denominator are multiplied or divided by the same number, the value of the fraction remains the same.

A fraction can be simplified when the numerator and denominator have a common factor other than one.

To write a fraction in its simplest form, divide both the numerator and denominator by their highest common factor.

Progression in mathematical language: fractions

Y5	National Curriculum		National Curriculum
vocabulary expectations	content domain		

3.8 ___ and ___ are related fractions because the denominator, "__", is a multiple of the other denominator, " \qquad ".

Related fractions have denominators where one denominator is a multiple of the other.

To add or subtract fractions with different denominators, first convert to fractions with a common denominator.

We can find a common denominator for two non-related fractions by multiplying their denominators.

Progression in mathematical language: fractions

Progression in mathematical language: fractions

Y6	National Curriculum vocabulary expectations	National Curriculum content domain
	NCETM additional language support (sentence stems)	NCETM general statements / additional phrases
$\begin{aligned} & 3.10 \\ & \text { ctd } \end{aligned}$	Each whole has been divided into \qquad equal parts. Each part is one- \qquad of the whole.	In order to convert a percentage to a fraction, first convert it to a fraction with a denominator of 100. To find 50% of a number, halve it. To find 10% of a number, divide it by ten. To find 1% of a number, divide it by one hundred.

